This is default featured slide 1 title

WELCOME TO MY BLOG, SHARING EVERYTHINS, ALL ABOUT PHYSICS, ASTRONOMY, AND SOME POPULAR ARTICLES.

This is default featured slide 2 title

Graceful Eruption -- GALLERY.

This is default featured slide 3 title

Antares Rocket Launches-- GALLERY.

This is default featured slide 4 title

James Webb Telescope Model at South by Southwest.

This is default featured slide 5 title

Expedition 34 Crew Members-- GALLERY.

Selasa, 21 Mei 2013

Sifat Gelombang Elektromagnetik

  1. Dapat merambat dalam ruang hampa.
  2. Merupakan gelombang transversal (arah getar ^ arah rambat), jadi dapat mengalami polarisasi.
  3. Dapat mengalami refleksi, refraksi, interferensi dan difraksi.
  4. Tidak dibelokkan dalam medan listrik maupun medan magnet.
Catatan:
Gelombang radio dipakai sebagai gelombang pembawa sistem komunikasi karena mudah dipantulkan oleh lapisan ionosfer.
Ada 2 macam cara membawa gelombang bunyi:

  1. Modulasi Amplitudo (AM)
    Amplitudo gelombang radio disesuaikan dengan frekuensi gelombang bunyi dengan frekuensi tetap.
  2. Modulasi Frekuensi (FM)
    Frekuensi gelombang radio disesuaikan dengan frekuensi gelombang bunyi dengan amplitudo tetap.
Sistem FM lebih unggul daripada AM karena FM dapat mengurangi desau akibat kelistrikan diudara, walaupun jangkauannya terbatas sekali.

Minggu, 19 Mei 2013

Mata Dan Kaca Mata

Suatu benda dapat terlihat jelas oleh mata jika bayangannya terletak tepat di retina mata.
Berlaku rumus 1/f = 1/s + 1/s'
dimana f dapat berubah-ubah atau berakomodasi sesuai dengan rumus:
1/f = [n2/n1 - 1] [ 1/R1 - 1/R2]
Tititk Jauh (PR) : titik terjauh yang masih dapat dilihat jelas dengan mata tidak berakomodasi.
Tititk Dekat (PP) : titik terdekat yang masih dapat dilihat jelas dengan mata berakomodasi maksimum.

Mata Normal seringkali diamsumsikan titik dekatnya 25 cm di depan mata (jarak baca) den titik jauhnya di tak terhingga.

Rabun Jauh (miop, mata dekat) ® PP = 2S dan PR < ¥
Dalam hal ini bayangan dari benda jatuh di depan retina. Agar benda terlihat jelas maka dipakai kacamata berlensa negatif (divergen/cekung).

s = ¥
s' = - PR
®
f = - s'

Rabun Dekat (hipermetrop, mata jauh) ® PP > 25 dan PR = ¥
Dalam hal ini bayangan dari benda jatuh di belakang retina. Agar benda terlihat jelas maka dipakai kacamata berlensa positif (konvergen/cembung).

s = 25
s' = - PP
Mata Tua (Presbiop) ® PP > 25 dan PR < ¥
Agar benda terlihat jelas maka dapat digunakan kacamata bifokal
(+ dan -)

Catatan:
Untuk mata yang mengalami astigmatisma dipakai kacamata silindris.

Fase, Beda Fase Dan Gaya Penyebab Getaran Harmonis

Fase Getaran : F = t/T= q/360 = q/2p Tidak bersatuan
Beda Fase : DF = F1 - F2 Selisih fase antara due titik yang melakukan getaran selaras

Catatan :
0 < F < 1
Jika F = 1 3/4 dapat ditulis F = 3/4, sehingga q= 2p.3/4 = 270_
F = 2 1/3 dapat ditulis F= 1/3, sehingga q = 2p.1/3 = 120_

Gaya Getaran:
F = m.ay
F = -m.w2.y = -K.y



sumber :http://bebas.vlsm.org

Hukum Hooke

s = E e
E = F/A : DL/L = F L/A DL
s = tegangan = beban persatuan luas = F/A
e = regangan = pertambahan panjang/panjang mula-mula = DL/L
E = modulus elastisitas = modulus Young
L = panjang mula-mula
c = konstanta gaya
D
L = pertambahan panjang

Contoh:
1. Sebuah kawat baja (E = 2 x 1011 N/m2). Panjang 125 cm dan diameternya 0.5 cm mengalami gaya tarik 1 N.Tentukan:
a. tegangan.
b. regangan.
c. pertambahan panjang kawat.

Jawab:
a. Tegangan = F/A ; F = 1 N.
A =
p r2 = 3.14 (1/4 . 10-2)2
A = 1/(3.14 . 1/16 . 10-4) = 16 . 10-4/3.14 = 5.09 . 104 N/M2

b. Regangan = e = DL/L = (F/A)/E
= 5.09. 104/2.1011 = 2.55.10-7
c. Pertambahan panjang kawat: DL = e . L = 2.55 . 10-7 . 125 = 3.2 . 10-5 cm

 sumber : http://bebas.vlsm.org

HUKUM KEKEKALAN MOMENTUM

HUKUM KEKEKALAN MOMENTUM

Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2.
Jika dua benda A dan B dengan massa masing-masing MA dan MB serta kecepatannya masing-masing VA dan VB saling bertumbukan, maka :
MA VA + MB VB = MA VA + MB VB
VA dan VB = kecepatan benda A dan B pada saat tumbukan
VA dan VB = kecepatan benda A den B setelah tumbukan. 


Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif.
Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,
a. ELASTIS SEMPURNA : e = 1
e = (- VA' - VB')/(VA - VB)
e = koefisien restitusi.
Disini berlaku hukum kokokalan energi den kokekalan momentum.

b. ELASTIS SEBAGIAN: 0 < e < 1
Disini hanya berlaku hukum kekekalan momentum.

Khusus untuk benda yang jatuh ke tanah den memantul ke atas lagi maka koefisien restitusinya adalah:
e = h'/h 
h = tinggi benda mula-mula
h' = tinggi pantulan benda

C. TIDAK ELASTIS: e = 0
Setelah tumbukan, benda melakukan gerak yang sama dengan satu kecepatan v',

MA VA + MB VB = (MA + MB) v' 
Disini hanya berlaku hukum kekekalan momentum

Contoh:
1. Sebuah bola dengan massa 0.1 kg dijatuhkan dari ketinggian 1.8 meter dan mengenai lantai, kemudian dipantulkan kembali sampai ketinggian 1.2 meter. Jika g = 10 m/det2.
Tentukanlah:
a. impuls karena beret bola ketika jatuh.
b. koefisien restitusi

Jawab:
a. Selama bola jatuh ke tanah terjadi perubahan energi potensial menjadi energi kinetik.

Ep = Ek
m g h = 1/2 mv2 ®  v2 = 2 gh
®  v = Ö2 g h
impuls karena berat ketika jatuh:
I = F . Dt = m . Dv
= 0.1Ö2gh = 0.1 Ö(2.10.1.8) = 0.1.6 = 0,6 N det.
b. Koefisien restitusi:
e = Ö(h'/h) = Ö(1.2/1.8) = Ö(2/3) 
2. Sebuah bola massa 0.2 kg dipukul pada waktu sedang bergerak dengan kecepatan 30 m/det. Setelah meninggalkan pemukul, bola bergerak dengan kecepatan 40 m/det berlawanan arah semula. Hitung impuls pada tumbukan tersebut !
Jawab:
Impuls = F . t = m (v2 - v1)
         = 0.2 (-40 - 30)
         = -14 N det
Tanda  berarti negatif arah datangnya berlawanan dengan arah datangnya bola.
3. Sebuah peluru yang massanya M1 mengenai sebuah ayunan balistik yang massanya M2. Ternyata pusat massa ayunan naik setinggi h, sedangkan peluru tertinggal di dalam ayunan. Jika g = percepatan gravitasi, hitunglah kecepatan peluru pada saat ditembakkan !
Jawab:
Penyelesaian soal ini kita bagi dalam dua tahap, yaitu:
1. Gerak A - B.

Tumbukan peluru dengan ayunan adalah tidak elastis jadi kekekalan momentumnya:
M1VA + M2VB = (M1 + M2) V
M1VA + 0 = (M1 + M2) V

VA = [(M1 + M2)/M1] . v
2. Gerak B - C.
Setelah tumbukan, peluru dengan ayunan naik setinggi h, sehingga dapat diterapkan kekekalan energi:

EMB = EMC
EpB + EkB = EpC + EkC
0 + 1/2 (M1 + M2) v2 = (M1 + M2) gh + 0
Jadi kecepatan peluru: VA = [(M1 + M2)/M1] . Ö(2 gh)
d. ELASTISITAS KHUSUS DALAM ZAT PADAT
Zat adalah suatu materi yang sifat-sifatnya sama di seluruh bagian, dengan kata lain, massa terdistribusi secara merata. Jika suatu bahan (materi) berupa zat padat mendapat beban luar, seperti tarikan, lenturan, puntiran, tekanan, maka bahan tersebut akan mengalami perubahan bentuk tergantung pada jenis bahan dan besarnya pembebanan. Benda yang mampu kembali ke bentuk semula, setelah diberikan pembebanan disebut benda bersifat elastis.
Suatu benda mempunyai batas elastis. Bila batas elastis ini dilampaui maka benda akan mengalami perubahan bentuk tetap, disebut juga benda bersifat plastis.

sumber : http://bebas.vlsm.org
http://belajarfisika91.wordpress.com/kapita-selekta/ 

Rabu, 15 Mei 2013

VIDEO MEDAN MAGNETIK

Berikut terdapat video Medan Magnetik
TONTON VIDEO DISINI, KLIK

Momentum Dan Impuls

1. MOMENTUM LINIER (p)
MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.
p = m v
Momentum merupakan besaran vektor, dengan arah p = arah v
2. MOMENTUM ANGULER (L)
MOMENTUM ANGULER adalah hasil kali (cross product) momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.
L = m v R = m w R2
L = p R

Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.
Jika pada benda bekerja gaya F tetap selama waktu t, maka IMPULS I dari gaya itu adalah:
       t1
I = ò F dt = F (t2 - t1)
     t2

I = Perubahan momentum
Ft = m v akhir - m v awal


Impuls merupakan besaran vektor. Pengertian impuls biasanya dipakai dalam peristiwa besar dimana F >> dan t <<. Jika gaya F tidak tetap (F fungsi dari waktu) maka rumus I = F . t tidak berlaku.

Impuls dapat dihitung juga dengan cara menghitung luas kurva dari grafik gaya F vs waktu t.

Sumber :http://bebas.vlsm.org/

Daya (power)

DAYA adalah usaha atau energi yang dilakukan per satuan waktu.
P = W/t = F v (GLB)
P = Ek/t (GLBB)

Satuan daya : 1 watt = 1 Joule/det = 107 erg/det
Dimensi daya : [P] = MLT2T-3

Contoh:
Seorang bermassa 60 kg menaiki tangga yang tingginya 15 m dalam waktu 2 menit. Jika g = 10 m/det2, berapa daya yang dikeluarkan orang tersebut?
Jawab:
P = W/t = mgh/t = 60.10.15/2.60 = 75 watt. 

Sumber : http://bebas.vlsm.org/

Usaha (Kerja) Dan Energi

Jika sebuah benda menempuh jarak sejauh S akibat gaya F yang bekerja pada benda tersebut maka dikatakan gaya itu melakukan usaha, dimana arah gaya F harus sejajar dengan arah jarak tempuh S.
USAHA adalah hasil kali (dot product) antara gaya den jarak yang ditempuh.


W = F S = |F| |S| cos q
q = sudut antara F dan arah gerak

Satuan usaha/energi : 1 Nm = 1 Joule = 107 erg
Dimensi usaha energi: 1W] = [El = ML2T-2
Kemampuan untuk melakukan usaha menimbulkan suatu ENERGI (TENAGA).
Energi dan usaha merupakan besaran skalar.
Beberapa jenis energi di antaranya adalah:

  1. ENERGI KINETIK (Ek)

    Ek trans = 1/2 m v2

    Ek rot = 1/2 I w2

    m = massa
    v = kecepatan
    I = momen inersia
    w = kecepatan sudut


  2. ENERGI POTENSIAL (Ep)

    Ep = m g h

    h = tinggi benda terhadap tanah


  3. ENERGI MEKANIK (EM)

    EM = Ek + Ep

    Nilai EM selalu tetap/sama pada setiap titik di dalam lintasan suatu benda.
Pemecahan soal fisika, khususnya dalam mekanika, pada umumnya didasarkan pada HUKUM KEKEKALAN ENERGI, yaitu energi selalu tetap tetapi bentuknya bisa berubah; artinya jika ada bentuk energi yang hilang harus ada energi bentuk lain yang timbul, yang besarnya sama dengan energi yang hilang tersebut.
Ek + Ep = EM = tetap
Ek1 + Ep1 = Ek2 + Ep2

PRINSIP USAHA-ENERGI

Jika pada peninjauan suatu soal, terjadi perubahan kecepatan akibat gaya yang bekerja pada benda sepanjang jarak yang ditempuhnya, maka prinsip usaha-energi berperan penting dalam penyelesaian soal tersebut

W tot = DEk      ®  S F.S = Ek akhir - Ek awal
W tot = jumlah aljabar dari usaha oleh masing-masing gaya
        = W1 + W2 + W3 + .......

D Ek = perubahan energi kinetik = Ek akhir - Ek awal

ENERGI POTENSIAL PEGAS (Ep)
Ep = 1/2 k D x2 = 1/2 Fp Dx
Fp = - k Dx
Dx = regangan pegas
k = konstanta pegas
Fp = gaya pegas

Tanda minus (-) menyatakan bahwa arah gaya Fp berlawanan arah dengan arah regangan x.
2 buah pegas dengan konstanta K1 dan K2 disusun secara seri dan paralel:
seri paralel
    1      =   1   +   1 
  Ktot       K      K2
 Ktot = K1 + K2
Note: Energi potensial tergantung tinggi benda dari permukaan bumi. Bila jarak benda jauh lebih kecil dari jari-jari bumi, maka permukaan bumi sebagai acuan pengukuran. Bila jarak benda jauh lebih besar atau sama dengan jari-jari bumi, make pusat bumi sebagai acuan.

Contoh:
1. Sebuah palu bermassa 2 kg berkecepatan 20 m/det. menghantam sebuah paku, sehingga paku itu masuk sedalam 5 cm ke dalam kayu. Berapa besar gaya tahanan yang disebabkan kayu ?
Jawab:
Karena paku mengalami perubahan kecepatan gerak sampai berhenti di dalam kayu, make kita gunakan prinsip Usaha-Energi:
F. S = Ek akhir - Ek awal
F . 0.05 = 0 - 1/2 . 2(20)2
F = - 400 / 0.05 = -8000 N
(Tanda (-) menyatakan bahwa arah gaya tahanan kayu melawan arah gerak paku ).


Sumber :http://bebas.vlsm.org/

Gaya Sentripetal

Fs adalah gaya yang bekerja pada sebuah benda yang bergerak melingkar dimana arah F. selalu menuju ke pusat lingkaran.
Fs = m as
Fs= m v2/R = m
w2 R
as = v2/R = percepatan sentripetal

Reaksi dari gaya sentripetal disebut gaya sentrifugal, yang besarnya sama tetapi arahnya berlawanan dengan arah gaya sentripetal. 



Sumber : http://bebas.vlsm.org/ 

Gaya Gesek

Gaya gesek adalah gaya yang bekerja pada benda dan arahnya selalu melawan arah gerak benda. Gaya gesek hanya akan bekerja pada benda jika ada gaya luar yang bekerja pada benda tersebut.



fs = gaya gesek statis
ms = koefisien gesek statis
fk = gaya gesek kinetis
mk = koefisien gesek kinetis
P = Resultan gaya reaksi yang mengimbangi gaya aksi F dan W


Nilai fs antara nol sampai maksimum (nilai fs = 0 jika tidak ada gaya luar F yang bekerja pada benda, dan nilai fs mencapai maksimum pada saat benda akan bergerak). fs maksimum ini tergantung pada sifat permukaan benda dan lantai yang bersinggungan serta tergantung pada gaya normal.


Sumber : http://bebas.vlsm.org/

Hukum Newton

HUKUM NEWTON I
HUKUM NEWTON I disebut juga hukum kelembaman (Inersia).
Sifat lembam benda adalah sifat mempertahankan keadaannya, yaitu keadaan tetap diam atau keaduan tetap bergerak beraturan.

DEFINISI HUKUM NEWTON I :
Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultan
gaya (F) yang bekerja pada benda itu, jadi:

S F = 0   a = 0 karena v=0 (diam), atau v= konstan (GLB)


HUKUM NEWTON II
a = F/m
S F = m a
S F = jumlah gaya-gaya pada benda
m = massa benda
a = percepatan benda

Rumus ini sangat penting karena pada hampir semna persoalan gerak {mendatar/translasi (GLBB) dan melingkar (GMB/GMBB)} yang berhubungan dengan percepatan den massa benda dapat diselesaikan dengan rumus tersebut.

HUKUM NEWTON III

DEFINISI HUKUM NEWTON III:

Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut mengerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada 
dua benda yang berlainan.
F aksi = - F reaksi
N dan T1 = aksi reaksi (bekerja pada dua benda)
T2 dan W = bukan aksi reaksi (bekerja pada tiga benda)


Gaya Termasuk Vektor

DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.

GAYA TERMASUK VEKTOR, penjumlahan gaya = penjumlahan vektor.
Penjumlahan dua buah vektor gaya F1 dan F2:
FR = Ö F12 + F22 + 2 F1F2 cos a
q = sudut terkecil antara F1 dan F2

Untuk menjumlahkan beberapa vektor gaya maka gaya-gaya tersebut harus diuraikan pada sumbu koordinatnya (x,y), jadi:
FR = Ö FX2 + FY2
FX = jumlah komponen gaya pada sb-x
FY = jumlah komponen gaya pada sb-y
FR = resultan gaya 


Sumber : http://bebas.vlsm.org/

GERAK MELINGKAR

Gerak melingkar terbagi dua, yaitu:
1. GERAK MELINGKAR BERATURAN (GMB)
GMB adalah gerak melingkar dengan kecepatan sudut (w) tetap.
Arah kecepatan linier v selalu menyinggung lintasan, jadi sama dengan arah kecepatan tangensial sedanghan besar kecepatan v selalu tetap (karena w tetap). Akibatnya ada percepatan radial ar yang besarnya tetap tetapi arahnya berubah-ubah. ar disebut juga percepatan sentripetal/sentrifugal yang selalu | v.
v = 2pR/T = w R
ar = v2/R = w2 R
s = q R



2. GERAK MELINGKAR BERUBAH BERATURAN (GMBB)
GMBB adalah gerak melingkar dengan percepatan sudut a tetap.
Dalam gerak ini terdapat percepatan tangensial aT = percepatan linier, merupakan percepatan yang arahnya menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan v).
a = Dw/Dt = aT / R
aT = dv/dt = a R
T = perioda (detik)
R = jarijari lingkaran.
a = percepatan angular/sudut (rad/det2)
aT = percepatan tangensial (m/det2)
w = kecepatan angular/sudut (rad/det)
q = besar sudut (radian)
S = panjang busur

Hubungan besaran linier dengan besaran angular:
vt = v0 + a t wt
S = v0 t + 1/2 a t2
Þ  w0 + a t
Þ  q =
w0 + 1/2 a t2
Contoh:
1. Sebuah mobil bergerak pada jalan yang melengkung dengan jari-jari 50 m. Persamaan gerak mobil untuk S dalam meter dan t dalam detik ialah:
S = 10+ 10t - 1/2 t2
Hitunglah:
Kecepatan mobil, percepatan sentripetal dan percepatan tangensial pada saat t = 5 detik !
Jawab:
v = dS/dt = 10 - t; pada t = 5 detik, v5 = (10 - 5) = 5 m/det.
- percepatan sentripetal : aR = v52/R = 52/50 = 25/50 = 1/2 m/det2
- percepatan tangensial : aT = dv/dt = -1 m/det2



Sumber : http://bebas.vlsm.org/

Gerak Karena Pengaruh Gravitasi

GERAK JATUH BEBAS: adalah gerak jatuh benda pada arah vertikal dari ketinggian h tertentu tanpa kecepatan awal (v0 = 0), jadi gerak benda hanya dipengaruhi oleh gravitasi bumi g.

y = h = 1/2 gt2
t = 
Ö(2 h/g)
yt = g t = 
Ö(2 g h)

g = percepatan gravitasi bumi.
y = h = lintasan yang ditempuh benda pada arah vertikal,(diukur dari posisi benda mula-mula).
t = waktu yang dibutuhkan benda untuk menempuh lintasannya.


GERAK VERTIKAL KE ATAS: adalah gerak benda yang dilempar dengan suatu kecepatan awal v0 pada arah vertikal, sehingga a = -g (melawan arah gravitasi).
syarat suatu benda mencapai tinggi maksimum (h maks): Vt = 0
Dalam penyelesaian soal gerak vertikal keatas, lebih mudah diselesaikan dengan menganggap posisi di tanah adalah untuk Y = 0.
Contoh:
1. Sebuah partikel bergerak sepanjang sumbu-X dengan persamaan lintasannya: X = 5t2 + 1, dengan X dalam meter dan t dalam detik. Tentukan:
a. Kecepatan rata-rata antara t = 2 detik dan t = 3 detik.
b. Kecepatan pada saat t = 2 detik.
c. Jarak yang ditempah dalam 10 detik.
d. Percepatan rata-rata antara t = 2 detik dan t = 3 detik.

Jawab:

a. v rata-rata = DX / Dt = (X3 - X2) / (t3 - t2) = [(5 . 9 + 1) - (5 . 4 + 1)] / [3 - 2] = 46 - 21 = 25 m/ detik

b. v2 = dx/dt |t=2 = 10 |t=2 = 20 m/detik.
c. X10 = ( 5 . 100 + 1 ) = 501 m ; X0 = 1 m
Jarak yang ditempuh dalam 10 detik = X10 - X0 = 501 - 1 = 500 m
d. a rata-rata = Dv / Dt = (v3- v2)/(t3 - t2) = (10 . 3 - 10 . 2)/(3 - 2) = 10 m/det2

Gerak Lurus Berubah Beraturan (GLBB)

Gerak Lurus Berubah Beraturan (GLBB) adalah gerak lurus pada arah mendatar dengan kecepatan v yang berubah setiap saat karena adanya percepatan yang tetap. Dengan kata lain benda yang melakukan gerak dari keadaan diam atau mulai dengan kecepatan awal akan berubah kecepatannya karena ada percepatan (a= +) atau perlambatan (a= -). 
Pada umumnya GLBB didasari oleh Hukum Newton II ( S F = m . a ).
vt = v0 + a.t
vt2 = v02 + 2 a S
S = v0 t + 1/2 a t2
vt = kecepatan sesaat benda
v0 = kecepatan awal benda
S = jarak yang ditempuh benda
f(t) = fungsi dari waktu t

v = ds/dt = f (t)
a = dv/dt = tetap
Syarat : Jika dua benda bergerak dan saling bertemu maka jarak yang ditempuh kedua benda adalah sama.

Sumber : http://bebas.vlsm.org/

Gerak Lurus Beraturan (GLB)

KINEMATIKA adalah Ilmu gerak yang membicarakan gerak suatu benda tanpa memandang gaya yang bekerja pada benda tersebut (massa benda diabaikan). Jadi jarak yang ditempuh benda selama geraknya hanya ditentukan oleh kecepatan v dan atau percepatan a.

Gerak Lurus Beraturan (GLB) adalah gerak lurus pada arah mendatar dengan kocepatan v tetap (percepatan a = 0), sehingga jarakyang ditempuh S hanya ditentukan oleh kecepatan yang tetap dalam waktu tertentu.
Pada umumaya GLB didasari oleh Hukum Newton I ( S F = 0 ).

S = X = v . t ; a = Dv/Dt = dv/dt = 0
v = DS/Dt = ds/dt = tetap

Tanda D (selisih) menyatakan nilai rata-rata.

Tanda d (diferensial) menyatakan nilai sesaat.

sumber : http://bebas.vlsm.org/

MEDAN MAGNETIK

Medan Magnetik Bumi


Dalam fisika, Magnetisme adalah salah satu fenomena yang terjadi pada materi/benda yang dapat memberikan gaya menarik atau menolak terhadap benda lainnya. Beberapa benda yang memiliki sifat magnet adalah besi, dan beberapa baja, serta mineral Iodeston; namun, seluruh benda pasti terpengaruh oleh adanya gaya magnet ini walaupun kecil.
Suatu magnet adalah materi yang mempunyai medan magnet. Materi tersebut bisa dalam wujud magnet tetap atau magnet tidak tetap. Magnet yang sering kita dapati sekarang ini kebanyakan adalah magnet buatan.
Magnet selalu memiliki dua kutub yaitu: kutub Utara (North/ N) dan kutub Selatan (South/ S). Walaupun magnet itu dipotong-potong, potongan magnet kecil tersebut akan tetap memiliki dua kutub.
Medan magnetik didefinisikan sebagai daerah atau ruang di sekitar magnet yang masih dipengaruhi gaya magnetik. Kuat dan arah medan magnetik dapat juga dinyatakan oleh garis gaya magnetik. Jumlah garis gaya per satuan penampang melintang adalah ukuran kuat medan magnetik”, dilambangkan dengan huruf  “B” dan satuannya “Wb/m2 ” atau “Tesla”. Dan Bumi adalah medan magnet alam.
Ada tiga aturan garis-garis medan magnet, yaitu :
  1. Garis-garis medan magnet tidak pernah memotong satu sama lain
  2. Garis-garis medan magnet selalu keluar dari kutub utara dan memasuki kutub selatan dan membentuk kurva tertutup.
  3. Jika garis-garis medan magnet di daerah tertentu rapat, maka medan magnetis pada daerah itu kuat, demikian sebaliknya jika garis-garis medan magnet renggang, maka medan magnetis di daerah itu lemah.
Garis Gaya Magnetik
Di bawah ini adalah gambar dari bagian video-animasi tentang garis-garis medan. Hasilnya sangat realistis, yang menggambarkan kehidupan rahasia dari medan magnet yang tak terlihat. Semua kejadian berlangsung di sekitar NASA’s Space Sciences Laboratories, UC Berkeley, yang menggambarkan penemuan para ilmuan.











Garis Gaya _ Medan Magnetik



Sumber : http://belajarfisika91.wordpress.com/

Sabtu, 04 Mei 2013

SUNNAH RASUL KETIKA GERHANA

Amalan Sunat Semasa Gerhana:
Menerusi sekian banyak hadis berkaitan gerhana, terdapat beberapa perkara sunat yang dianjurkan supaya dilakukan semasa kejadian gerhana. Di antaranya ialah:

TERJADINYA GERHANA BULAN (LUNAR ECLIPSE)

Kali ini, ada sebuah video yang menggambarkan pergerakan bulan yang menutupi bumi yang di sebut secara umum sebagai Gerhana Bulan Eclipse.
Berikut animasi nya .
GERHANA BULAN ECLIPSE

Apa sebenarnya gerhana bulan tersebut?
Lunar Eclipse atau Gerhana Bulan merupakan fenomena alam. Gerhana bulan terjadi saat sebagian atau keseluruhan penampang bulan tertutup oleh bayangan bumi. Itu terjadi bila bumi berada di antara matahari dan bulan pada satu garis lurus yang sama, sehingga sinar matahari tidak dapat mencapai bulan karena terhalangi oleh bumi.

Dengan penjelasan lain, gerhana bulan muncul bila bulan sedang beroposisi dengan matahari. Tetapi karena kemiringan bidang orbit bulan terhadap bidang ekliptika, maka tidak setiap oposisi bulan dengan matahari akan mengakibatkan terjadinya gerhana bulan. Perpotongan bidang orbit bulan dengan bidang ekliptika akan memunculkan 2 buah titik potong yang disebut node, yaitu titik di mana bulan memotong bidang ekliptika. Gerhana bulan ini akan terjadi saat bulan beroposisi pada node tersebut. Bulan membutuhkan waktu 29,53 hari untuk bergerak dari satu titik oposisi ke titik oposisi lainnya. Maka seharusnya, jika terjadi gerhana bulan, akan diikuti dengan gerhana matahari karena kedua node tersebut terletak pada garis yang menghubungkan antara matahari dengan bumi.

Sebenarnya, pada peristiwa gerhana bulan, seringkali bulan masih dapat terlihat. Ini dikarenakan masih adanya sinar matahari yang dibelokkan ke arah bulan oleh atmosfer bumi. Dan kebanyakan sinar yang dibelokkan ini memiliki spektrum cahaya merah. Itulah sebabnya pada saat gerhana bulan, bulan akan tampak berwarna gelap, bisa berwarna merah tembaga, jingga, ataupun coklat. Gerhana bulan dapat diamati dengan mata telanjang dan tidak berbahaya sama sekali.


HUKUM 1 NEWTON

Kali ini, saya akan men-sharekan tentang Hukum 1 newton(Hukum Newton tentang Gerak). Isaac Newton (seorang ilmuwan abad ke-17) mengajukan berbagai undang-undang yang menjelaskan mengapa benda bergerak (atau tidak bergerak) seperti yang mereka lakukan. Ketiga undang-undang telah menjadi dikenal sebagai tiga hukum gerak Newton.
Berdasarkan hukum I Newton, setiap benda akan selalu mempertahankan kedudukannya. Inilah sebabnya sulit mengendalikan mobil yang melaju dengan kencang (mencegah tabrakan). Seperti kencangnya mobil-mobil balap di bawah ini .

 Bunyi hukum I Newton
“Suatu benda tetap berada dalam keadaan diam atau bergerak dengan kecepatan tetap jika tidak ada gaya luar yang bekerja padanya “
Tidak ada gaya luar yang bekerja, berarti resultan gaya sama dengan nol. Atau secara matematis dituliskan sebagai
Hukum I Newton ===> ∑F= 0 untuk benda diam atau benda bergerak lurus beraturan.
 
Hukum I Newton juga menggambarkan bahwa suatu benda akan cenderung mempertahankan keadaan diam atau keadaan bergeraknya.
Kecenderungan sebuah benda untuk mempertahankan keadaan diamnya disebut dengan inersia/kelembaman.
Sehingga Hukum I Newton disebut juga hukum inersia atau hukum kelembaman.
Besarnya inersia/kelembaman benda ditunjukkan dengan massa (ukuran inersia suatu benda).
Peristiwa sehari-hari yang berkaitan dengan hukum I Newton
Ketika kita berdiri dalam bus yang sedang  melaju kencang, tiba-tiba bus direm, para penumpang akan terdorong ke depan. Demikian juga saat tiba-tiba bus dipercepat (di gas), para penumpang terlempar ke belakang.

sumber : http://kangopay.wordpress.com/bahan-ajar/fisika/kelas-viii/gaya/hukum-newton-1/